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Introduction
The ability to perform accurate nonlinear simulations is a key component in
the assessment of the behavior of seismic force resisting systems. A three‐
dimensional distributed plasticity formulation for composite beam‐columns
suitable for nonlinear static and dynamic analyses of composite seismic force
resisting systems has been developed. New uniaxial constitutive relations are
developed for the concrete and steel elements to simulate the cyclic
response of steel reinforced concrete (SRC) members. The relations account
for the salient features of each material, as well as the interaction between
the two, including for concrete: varying levels of confinement within a
section, cracking, crushing, and spalling, and for steel: cyclic plasticity and
residual stresses. The accuracy of the formulation is validated against a
comprehensive set of results from monotonically and cyclically loaded
beam‐column specimens.

This research builds off prior work by Tort and Hajjar (2010) on rectangular
concrete filled steel tubes (CFT) and and Denavit and Hajjar (2010) on
circular CFTs.

Concrete Model
The constitutive relation for the concrete is based on the rule‐based model
of Chang and Mander (1994). The backbone stress‐strain curve for the
concrete is based on the model by Tsai, which is defined by the initial
stiffness Ec, peak coordinate (ε´cc, f´cc), and r which acts as a shape factor. The
confinement model developed by Mander et al. (1988) for a triaxial state of
stress is utilized to determine the peak compressive strength from the
confining pressure in two orthogonal directions.

Three levels of confinement are considered:
• Cover Concrete ‐ The outermost concrete region of concrete is assumed

to have zero confining pressure in either direction. Furthermore, it is
allowed to spall.

• Medium Confined Concrete ‐ The concrete inside the lateral reinforcing
bars. In this region, confining pressure is provided by the lateral
reinforcing bars. The magnitude of the confining pressure is computed in
two orthogonal directions.

• Highly Confined Concrete ‐ The concrete between the flanges of the steel
shape. In this region, confining pressure is provided by the lateral
reinforcing bars and the steel shape. The confining pressure provided by
the steel shape acts only in the y direction and is computed considering
the plastic moment capacity of the flange. The parabolic boundary is
modeled explicitly with different constitutive relations on either side.

Proportionally Loaded 
Beam‐Columns
The most common experimental configuration for testing SRC beam‐columns
is monotonic proportional loading. Details of four specimens from various
experimental studies are presented. The results of these experiments are
compared to results from analyses conducted using the model presented in
this work. The results show a good correlation between experimental and
computational results. This is seen in the initial stiffness, peak load,
deflection at peak load, post‐peak degradation, and ratio of strong and weak
axis deflections. The two specimens by Morino et al. have a similar cross
section and loading angle, but specimen D8‐45 has approximately twice the
length and eccentricity of B4‐45. The higher first‐ and second‐order
moments resulted in a significantly lower peak axial load for D8‐45. The
model predicted the peak axial load accurately for both specimens indicating
that model captures well both material and geometric nonlinearity.

Future Directions
This formulation was developed and is suitable for use in large scale
parametric studies to develop design recommendations for SRC members
and frames. Three specific studies are planned and will be carried out using
this formulation.

Effective Flexural Rigidity
Equivalent stiffness values for composite columns are used in elastic
analyses to determine the fundamental frequencies of vibration of a
structure, as well as seismic force and deformation demands. Such
recommendations should account for the effect of material nonlinearity,
most notable concrete cracking, on the average frame behavior.
Recommendations will be developed through comparisons between
computational results from static and dynamic analyses of composite frames
and elastic analyses utilizing equivalent stiffness values.

Stability Design by Direct Analysis
The direct analysis method provides a more straightforward and accurate
way of addressing frame in‐plane stability considerations than traditional
effective length factor methods. In this method, required strengths are
determined with a second‐order elastic analysis where members are
modeled with a nominal reduced elastic stiffness and a nominal initial out‐
of‐plumbness (the initial out‐of‐plumbness is often modeled using notional
lateral loads). However, to date, no procedure has been established to
determine appropriate reduced elastic stiffness values for composite beam‐
columns. Design recommendations of this type will be developed and
validated against computational results from the static analyses of small
sensitive benchmark frames.

Seismic Performance Factors
Seismic performance factors are used to account for inelastic dynamic
behavior in a design method which predominantly employs static elastic
analysis techniques. However, the response modification factor for
composite systems has been somewhat arbitrarily assigned. Using the
methodology that was recently developed by the ATC‐63 project (FEMA
2009), seismic performance factors will be determined for composite lateral
force resisting systems. The specific structural systems of interest are
composite special moment resisting frame and composite special
concentrically braced frame systems.
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Steel Model
The constitutive relation used for the wide flange steel shape and the
reinforcing steel bars is based on the bounding‐surface plasticity model of
Shen et al. (1995). Modifications were made to model the effects of residual
stress within the steel section. The residual stress at a fiber is modeled
explicitly as an initial elastic stress in the uniaxial constitutive relation. The
Lehigh residual stress pattern is used to define the value of residual stress in
the steel section with a maximum compressive residual stress of 30% of the
yield strength occurring at the flange tips. The confined concrete is assumed
to prevent flange and web local buckling and thus, these effects have not
been included.

Cyclically Loaded Beam‐Columns
A set of carefully controlled and well documented non‐proportionally loaded
cyclic SRC beam‐columns tests was performed by Ricles and Paboojian
(1993, 1994). The specimens were subjected to a constant axial load and
cyclically increasing horizontal displacements which induced strong axis
bending in the column. Details of two of specimens from this experimental
study are presented. The load‐deformation results of these experiments are
compared to those from analyses conducted using the model presented in
this work. Additionally, the stress‐strain response from the extreme fiber of
the steel section and the extreme fiber of the highly confined concrete as
predicted from the analysis are shown. The results show a good correlation
between experimental and computational results. The initial stiffness and
peak strength are predicted well by the model. The unloading stiffness and
yield upon unloading are less accurate, leading to the model predicting fuller
hysteresis loops than observed in the experiments.
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Mixed Beam Element
Frame analyses using distributed‐plasticity beam‐column elements strike a
favorable balance between computational efficiency and accuracy.
Additionally, mixed formulations (defined here as treating both element
displacements and stress resultants as primary state variables) provide more
accurate results with fewer elements as compared to either displacement‐
or force‐based formulations.

The element stiffness and internal force are derived in the corotational
frame using small strain assumptions. When accompanied with an exact
transformation between the corotational and global frame the element is
capable of capturing moderate deformation and rotation behavior.

Implemented within the OpenSees framework, the element can be used
with the wide variety of other elements and solution algorithms available in
the framework.
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Author Year Spec- 
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(MPa)
db 
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Fyr 

(MPa)
L 

(mm)
Axis e 

(mm)
Wang 1999 RSJ1 200 200 55.0 RSJ 102x102 310.0 n/a n/a 4,000 Strong 55.0

Virdi and Dowling 1973 G 254 254 44.8 UC 6x6@15.7 314.7 12.7 309 7,315 Biaxial 73.4
Morino et al. 1984 B4-45 160 160 23.4 H-100x100x6x8 287.0 4.0 387 2,309 Biaxial 40.0
Morino et al. 1984 D8-45 160 160 22.9 H-100x100x6x8 302.0 4.0 387 4,619 Biaxial 75.0

 
(a) Wang 1999; Specimen: RSJ1 

 
(b) Virdi and Dowling 1973; Specimen G 

 
(c) Morino et al. 1984; Specimen B4-45 

 
(d) Morino et al. 1984; Specimen D8-45 
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(a) Specimen 6 

 
(b) Specimen 8 

 
(c) Specimen 6, Steel Section Fiber 

Stress-Strain Relationship 

 
(d) Specimen 6, Highly Confined 

Concrete Fiber Stress-Strain Relationship 
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6 406 406 35.8 W8x40 372 28.6 448 1,930 1,490
8 406 406 62.9 W8x40 372 22.2 434 1,930 1,490

Fiber Section
The formulation relies on accurate constitutive relations to achieve accurate
results. The constitutive relations are defined for the finite element at the
section level using a fiber model. A fiber model allows the wide variety of
behavior exhibited by SRC sections to be described by the integration of
uniaxial constitutive relations located throughout the section. Five distinct
regions are identified within the section and separate constitutive relations
are defined for each of these regions.
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